3 resources

  • Chi-Min Chan, Weize Chen, Yusheng Su
    |
    Aug 14th, 2023
    |
    preprint
    Chi-Min Chan, Weize Chen, Yusheng Su
    Aug 14th, 2023

    Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost. With the emergence of large language models (LLMs), researchers have explored LLMs' potential as alternatives for human evaluation. While these single-agent-based approaches show promise, experimental results suggest that further advancements are needed to bridge the gap between their current effectiveness and human-level evaluation quality. Recognizing that best practices of human...

  • Lei Huang, Weijiang Yu, Weitao Ma
    |
    Nov 9th, 2023
    |
    preprint
    Lei Huang, Weijiang Yu, Weitao Ma
    Nov 9th, 2023

    The emergence of large language models (LLMs) has marked a significant breakthrough in natural language processing (NLP), leading to remarkable advancements in text understanding and generation. Nevertheless, alongside these strides, LLMs exhibit a critical tendency to produce hallucinations, resulting in content that is inconsistent with real-world facts or user inputs. This phenomenon poses substantial challenges to their practical deployment and raises concerns over the reliability of...

  • Abhimanyu Dubey, Abhinav Jauhri, Abhinav...
    |
    Aug 15th, 2024
    |
    preprint
    Abhimanyu Dubey, Abhinav Jauhri, Abhinav...
    Aug 15th, 2024

    Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language...

Last update from database: 04/04/2025, 19:15 (UTC)
Powered by Zotero and Kerko.