Math Multiple Choice Question Generation via Human-Large Language Model Collaboration

Article Status
Published
Authors/contributors
Title
Math Multiple Choice Question Generation via Human-Large Language Model Collaboration
Abstract
Multiple choice questions (MCQs) are a popular method for evaluating students’ knowledge due to their efficiency in administration and grading. Crafting high-quality math MCQs is a labor-intensive process that requires educators to formulate precise stems and plausible distractors. Recent advances in large language models (LLMs) have sparked interest in automating MCQ creation, but challenges persist in ensuring mathematical accuracy and addressing student errors. This paper introduces a prototype tool designed to facilitate collaboration between LLMs and educators for streamlining the math MCQ generation process. We conduct a pilot study involving math educators to investigate how the tool can help them simplify the process of crafting high-quality math MCQs. We found that while LLMs can generate well-formulated question stems, their ability to generate distractors that capture common student errors and misconceptions is limited. Nevertheless, a human-AI collaboration has the potential to enhance the efficiency and effectiveness of MCQ generation.
Repository
arXiv
Archive ID
arXiv:2405.00864
Date
May 1st, 2024
Citation Key
lee2024b
Accessed
20/06/2024, 08:42
Language
en
Library Catalogue
Extra
arXiv:2405.00864 [cs] <标题>: 通过人类与大型语言模型合作生成数学多项选择题
Citation
Lee, J., Smith, D., Woodhead, S., & Lan, A. (2024). Math Multiple Choice Question Generation via Human-Large Language Model Collaboration (arXiv:2405.00864). arXiv. http://arxiv.org/abs/2405.00864
Powered by Zotero and Kerko.